

BCF-003-001501 Seat No. _____

B. Sc. (Sem. V) (CBCS) (W.E.F. 2012) Examination

August - 2021

Physics: Paper - 501

(Mathematical Physics, Classical Mechanics & Quantum Mechanics) (Old Course)

> Faculty Code: 003 Subject Code : 001501

		, asject 6646 . 661661	
Time:	$2\frac{1}{2}$ Hours]	[Total Marks	: 70
Instru	etions: (1)	All questions are compulsory.	
	(2)	Symbols have their usual meaning.	
	(3)	Figure on right side indicate marks.	
All ques	stions are com	pulsory	
1 Answer the questions.			20
(1) Write the value of Fourier coefficient b_n .			
(2)	Fourier series is used for		
(3)	Cosine fu	nction is and sine function	
(4)	Write the value of bn in interval of (o, l)		
(5)	Generalized force $Q_j = \underline{\hspace{1cm}}$		
(6)	Give the eq	Give the equation of De'Alembert's principle.	
(7)		In case of simple pendulum, only variable is sufficient for description of motion.	
(8)	function L,	ate 9_k does not appear in the Lagrangian, corresponding to linear momentum P_k is of motion, such type of coordinate 9_k is	

called _____ .

- (9) Hamiltonian is the function of _____.
- (10) Define: Phase space.
- (11) The equation of simple pendulum is _____.
- (12) Lagrange undetermine multiplier is denoted by the symbol _____
- (13) $\frac{W}{K^2} =$ _____
- (14) Schrodinger's equation for a free particle in three dimension is _____
- (15) In $|\Psi|^2 = \Psi \Psi^*$, where Ψ^* is called of _____ Ψ .
- (16) According to probability interpretation, the normalize wave function is _____.
- $(17) (AB)^{\dagger} = \underline{\hspace{1cm}}$
- $(18) \left[L_x, L_y \right] = \underline{\hspace{1cm}}$
- (19) The N^2 is called the _____ of the wave function.
- (20) Expectation value of energy $\langle E \rangle =$

2 (A) Answer any **three** of the following questions:

6

- (1) Obtain the sine series.
- (2) What is called holonomic and nonholonomic constraints?
- (3) Discuss cyclic coordinates.
- (4) What is the phase space?
- (5) Obtain Lagrange's equation from Hamilton's principle.
- (6) Write the Maxwell's equation for electro magnetic field. Obtain the equation.

$$\vec{E} = -\nabla \phi - \frac{\partial \vec{A}}{\partial t}$$

(B) Answer any three of the following questions:

9

- (1) Evaluate the a_a , a_n coefficient of Fourier series.
- (2) Obtain the Fourier series of the function

$$f(x) = \begin{cases} 0, & -\pi \le x \le 0 \\ 1, & 0 \le x \le \pi \end{cases}$$

- (3) Obtain the equation of simple pendulum from Lagrange's equation.
- (4) Obtain Hamilton's equation from Lagrangian function.
- (5) Explain Lagrange's undetermined multiplier.
- (6) Obtain the Hamilton's equation of motion.
- (C) Answer any **two** of the following questions:

10

- (1) Explain the two applications of Fourier series in detail.
- (2) Explain Rayleigh's dissipation function.
- (3) Obtain the equation for Atwood's machine from Lagrange's equation.
- (4) Derive the Hamilton's equation from Newton's equation.
- (5) Explain the phase space.
- **3** (A) Answer any **three** of the following questions:

6

- (1) Obtain the Schrodinger equation for a free particle in three dimension.
- (2) Explain physical interpretation of Ψ
- (3) Explain: Eigen function and eigen value.
- (4) Show that $\left[x, P_y\right] = 0$
- (5) Show that $\left(A^{\dagger}\right)^{\dagger} = A$
- (6) Show that expectation value of self adjoint operator is real.

(B) Answer any three of the following questions:

9

- (1) Explain the box-normalization with example.
- (2) Obtain the time independent Schrodinger equation.
- (3) Obtain the equation $\frac{d < P_x >}{dt} = \langle F_x \rangle$
- (4) Prove that
 - (i) $(A+B)^{\dagger} = A^{\dagger} + B^{\dagger}$
 - (ii) $(CA)^{\dagger} = C * A^{\dagger}$
- (5) Show that momentum operator is self adjoint.
- (6) Describe the fundamental postulate of wave mechanics.
- (C) Answer any **two** of the following questions:

10

- (1) Obtain the Schrodinger equation for a free particle in one dimension.
- (2) Explain: The conservation of probability.
- (3) Explain Dirac delta function in detail.
- (4) Show that eigen values of self-adjoint operator are real.
- (5) Obtain the Ehrenfest's theorem.